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Abstract
In multi-component soft matter, two microphase separated ordered phases such as lamellar and
hexagonal phases coexist in equilibrium. We call such a macroscopic phase separation
‘order–order phase separation’. Based on a coarse grained single order parameter
Ginzburg–Landau free energy, we investigate the dynamics of order–order phase separation.
For this purpose, the equilibrium phase diagram is determined in three dimensions, including
BCC and gyroid phases. Focusing on the phase separation between the lamellar and hexagonal
phases, we study its dynamics using computer simulation in both two and three dimensions.
We show that the microphase separation takes place in the early stage and the macrophase
separation follows through the breaking and reconnection of microdomains. The observed
epitaxial relation between the lamellar and hexagonal phases is compared with an analytical
estimate of the interfacial energies of different mutual directions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase separation plays an essential role in soft matter, because
the resulting interfaces are responsible for the internal meso-
scopic structures. The existence of such meso-scale structures
is intimately related to non-linear and non-equilibrium behav-
iors of the materials. In contrast to mixtures of simple liq-
uids, which typically exhibit macrophase separation for certain
conditions, systems containing amphiphilic molecules such as
block copolymers or surfactants undergo microphase separa-
tion at low temperatures. Typical microphase separated struc-
tures appear as ordered structures such as lamellar, hexagonal,
body-centered-cubic (BCC), and gyroid phases, in which one
of the components is periodically arranged in space. In par-
ticular, the equilibrium structures in diblock copolymer melts
have been extensively studied in the past decades both experi-
mentally and theoretically [1].

In multi-component systems containing amphiphilic
molecules, two different ordered phases can generally coexist
in thermodynamic equilibrium. We refer to such a macroscopic
phase separation and the resulting coexistence between the two
ordered phases as ‘order–order phase separation’. (One should
distinguish ‘order–order phase separation’ from ‘order–order
phase transition’. In the latter case, phase transitions from one

ordered phase to another ordered phase are considered.) For
example, a coexistence between the stripe (two-dimensional
lamellar) and hexagonal phases was theoretically predicted
for insoluble Langmuir monolayers by Andelman et al [2].
In the experiment, it was found that the stripe (labyrinth)
and hexagonal phases coexist in binary mixed monomolecular
films containing cholesterol and phospholipid, and that it is
possible to observe the phase separation between these two
modulated phases [3]. The order–order phase separation
between the stripe and hexagonal phases is also anticipated
for two-component lipid bilayer membranes in which the
composition and the membrane curvature are coupled to each
other [4]. In binary mixtures of non-ionic surfactant and
water, it is known that the lamellar phase coexists with other
mesophases such as the hexagonal or gyroid phases [5, 6].

In different systems, Matsen calculated the binary phase
diagrams of AB diblock copolymer and A homopolymer
having similar degrees of polymerization [7, 8]. In his work,
various phase coexistences among the ordered mesophases
have been determined using self-consistent field theory. A
more systematic study by changing the ratio of the chain
lengths was performed by Janert and Schick [9, 10]. Moreover,
order–order phase separation occurs also for ternary blends of
A and B homopolymers plus slightly asymmetric AB diblock
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copolymer [11]. Recently, Mareau et al investigated the
interface between the perforated layer phase and gyroid phase
by 3D transmission electron microscopy in a blend of AB
diblock copolymer and homopolymer [12]. In non-equilibrium
situations, some groups have identified the coexisting states
between distinct structures for block copolymer melts under
external fields [13–15].

The previous studies on order–order phase separation have
mainly focused on the equilibrium properties and less attention
has been paid to its dynamical aspect. In this paper, we
discuss the kinetics of order–order phase separation. We shall
investigate how the two-phase coexistence is macroscopically
achieved starting from a uniformly disordered state. In other
words, our primary interest is to clarify the mechanism of
a double phase separation, i.e. the competition between the
macrophase and microphase separations. A somewhat similar
question was raised before for copolymer and homopolymer
mixtures by Ohta and Ito, who studied the phase separation
dynamics between the lamellar and disordered phases [16].

For this purpose, we employ a modified Ginzburg–Landau
free energy, which yields several modulated phases and their
coexistences. With the use of a two-mode expansion method,
we first construct a mean-field equilibrium phase diagram
in three dimensions including the BCC and gyroid phases.
Based on the obtained phase diagram, we perform computer
simulations of the proposed dynamical equation. In the present
study, we mainly focus on the order–order phase separation
between the lamellar and hexagonal phases in two dimensions.
We also study analytically the equilibrium interfacial profile
between the two ordered phases. Attention is paid to the
mutual orientation between the lamellar and hexagonal phases
in two dimensions. The result will be compared with that from
our computer simulation as well as the previous studies on
interfaces of modulated phases [17].

This paper is organized as follows. In the next section,
we first introduce a single order parameter Ginzburg–Landau
free energy functional which is used throughout this paper.
Based on this free energy, we present the equilibrium phase
diagram obtained by a two-mode expansion method in three
dimensions. In section 3, we consider a dynamical model of
the order–order phase separation, and perform its computer
simulation both in two and three dimensions. Various
quantities characterizing the transient structures are calculated
in order to clarify typical features of the order–order phase
separation. In section 4, we present an analytical calculation
of the interface between the lamellar and hexagonal phases for
different mutual orientations. Finally, we conclude in section 5.

2. Model and phase diagram

One of the simplest free energies that exhibits various
modulated phases is given by

F {φ(r)} =
∫

dr
[

2
(∇2φ

)2 − 2 (∇φ)2 + τ

2
φ2 + 1

4
φ4

]
,

(1)
which was used in [18]. This mean-field free energy is a
modified Ginzburg–Landau expansion in the order parameter

φ(r) = ψ(r) − ψc, where ψc is the composition at the
critical temperature Tc. In the above, τ = (T − Tc)/Tc is the
reduced temperature, and the coefficients of the other terms
are taken to be constant without loss of generality. Spatial
modulations are preferred due to the negative coefficient of
the gradient square term, while the Laplacian square term
plays the role of a homogenizing interaction. The modulation
occurs with a dominant wavevector k∗ = 1/

√
2 due to the

competition between these two gradient terms. Such a free
energy functional has been used to describe various systems
such as diblock copolymers [1], Langmuir films [2], magnetic
layers [19] and microemulsions [20]. It should be noticed,
however, that the free energy (1) is very generic, and it does
not pertain to any specific system.

With the use of equation (1), the phase diagram in two di-
mensions showing the relative stability of the lamellar (stripe)
and hexagonal phase was obtained previously [2, 4, 17]. Here
we obtain the phase diagram in three dimensions including the
BCC and gyroid phases in addition to these classical phases.
For this purpose, we employ a two-mode expansion method
and compare between the free energies of different ordered
phases [21]. We employ a mean-field approximation, and crit-
ical fluctuation corrections are not taken into account [22, 23].

In order to express all the ordered structures, we expand
φ(r) as

φ (r) = φ̄ + 2
12∑
j=1

a j cos
(
q j · r

) + 2
6∑

k=1

bk cos (pk · r) , (2)

where φ̄ is the average composition and a j and bk are real
amplitudes. The fundamental reciprocal vectors q j and pk are
defined by

q1 = CQ (2,−1, 1) , q2 = CQ (−2, 1, 1) ,

q3 = CQ (−2,−1, 1) , q4 = CQ (2, 1, 1) ,

q5 = CQ (−1,−2, 1) , q6 = CQ (1,−2, 1) ,

q7 = CQ (−1, 2, 1) , q8 = CQ (1, 2, 1) ,

q9 = CQ (1,−1,−2) , q10 = CQ (1, 1,−2) ,

q11 = CQ (−1, 1,−2) , q12 = CQ (−1,−1,−2) ,

p1 = CP (2, 2, 0) , p2 = CP (2,−2, 0) ,

p3 = CP (0, 2, 2) , p4 = CP (0,−2, 2) ,

p5 = CP (2, 0, 2) , p6 = CP (−2, 0, 2) ,

(3)

with CQ = Q/
√

6 and CP = P/(2
√

2), where Q and P are
the absolute values of q j and pk , respectively.

Within this expansion, the lamellar phase is given when
a1 = AL and all the other amplitudes vanish, whereas the
hexagonal phase is given when a3 = −a8 = a9 = AH and
all the other amplitudes are zero. On the other hand, the BCC
structure is obtained when a j = 0( j = 1, . . . , 12) and bk =
BS(k = 1, . . . , 6). Finally, the gyroid phase is constructed
by putting |a j | = AG( j = 1, . . . , 12) and |bk | = BG(k =
1, . . . , 6), together with the following condition between the
absolute values of the reciprocal vectors [21]:

Q2 = 3
4 P2. (4)

2
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Figure 1. Mean-field phase diagram of the free energy (1) in the
(φ̄, τ ) plane, where φ̄ is the average composition and τ is the
reduced temperature. The red (L), yellow (G), blue (H) and green (S)
regions correspond to the lamellar, gyroid, hexagonal and BCC
phases, respectively. The region of the disordered phase is denoted
by ‘D’. All the lines are first-order transition lines and the critical
point is located at (0, 1).

Substituting equation (2) into equation (1) and ignoring
the higher order harmonics, we can rewrite the free energy in
terms of a j , bk , Q and P . We leave the full expression to the
appendix since it is lengthy. The free energies of the lamellar
(FL), hexagonal (FH), BCC (FS), and gyroid phases (FG) are
obtained as

FL = FD + 4Q4 AL
2 − 4Q2 AL

2 + τ AL
2 + 3φ̄2 AL

2

+ 3

2
AL

4, (5)

FH = FD + 12Q4 AH
2 − 12Q2 AH

2 + 3τ AH
2 + 9φ̄2 AH

2

+ 12φ̄AH
3 + 45

2
AH

4, (6)

FS = FD + 24P4 BS
2 − 24P2 BS

2 + 6τ BS
2 + 18φ̄2 BS

2

+ 48φ̄BS
3 + 135BS

4, (7)

FG = FD + 48Q4 AG
2 + 24P2 BG

2 − 48Q2 AG
2 − 24P2 BG

2

+ 12τ AG
2 + 6τ BG

2 + 36φ̄2 AG
2 + 18φ̄2 BG

2

+ 306AG
4 + 216AG

2 BG
2 + 135BG

4 − 48φ̄AG
3

+ 48φ̄BG
3 − 72φ̄AG

2 BG, (8)

respectively, where

FD = τ

2
φ̄2 + 1

4
φ̄4 (9)

is the free energy of the disordered phase.
First, we compare the above free energies and look for

the structure which has the lowest free energy. In other
words, we determined the phase boundaries in figure 1 from
the crossings of the free energies. Hence we have ruled out
the possibility of any phase coexistence between the ordered
structures. In figure 1, the red (L), yellow (G), blue (H) and
green (S) regions represent the lamellar, gyroid, hexagonal
and BCC phases, respectively. The region of the disordered
phase is denoted by ‘D’. All the lines are first-order transition
lines. The critical point is located at (φ̄, τ ) = (0, 1), at
which a second-order phase transition between the disordered
and lamellar phases takes place. The gyroid phase appears

Figure 2. Mean-field phase diagram in the presence of the
coexistence regions between the different ordered phases. The red
(L), yellow (G), blue (H) and green (S) regions correspond to the
lamellar, gyroid, hexagonal and BCC phases, respectively. The white
regions are the coexisting regions between the two neighboring
phases located on the left- and right-hand sides. (b) The
magnification of (a) close to the critical point.

between the lamellar and hexagonal phases, and it ends at
(φ̄, τ ) ≈ (±0.10, 0.79). This mean-field phase diagram is
very similar to that of a diblock copolymer melt obtained
by Ginzburg–Landau type theory [21] or self-consistent field
theory [24].

Since we are interested in the order–order phase
separation, we next calculate the coexistence regions between
the different ordered phases using a common tangent
construction and the result is presented in figures 2(a) and (b)
(the latter is a magnification of the former close to the
critical point). The white regions are the coexisting regions
between the two neighboring phases located on the left- and
right-hand sides. The lamellar–hexagonal coexistence ends
at τ ≈ 0.67, and it starts again at τ ≈ −0.60 and ends
at τ ≈ −1.56. The lamellar–gyroid and gyroid–hexagonal
coexistences occurs for −0.60 � τ � 0.67. The hexagonal–
BCC coexistence ends at τ ≈ 0.38. Although a phase diagram
with coexistence regions has been obtained before in 2D
systems in the absence of the BCC and gyroid phases [4, 17],
the corresponding phase diagram in 3D has not yet been
calculated. It should be noted, however, that the binodal
lines between the lamellar and hexagonal phases coincide both
in 2D and 3D systems. We shall further investigate this
lamellar–hexagonal coexistence both by computer simulation
and analytical treatment.

3
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Figure 3. Time evolution of phase separation pattern for φ̄ = 0.1 and τ = 0.8 in two dimensions. (a) t = 0, (b) t = 150, (c) t = 500,
(d) t = 5000.

Figure 4. Time evolution of phase separation pattern for φ̄ = 0.12 and τ = 0.7 in two dimensions. (a) t = 0, (b) t = 70, (c) t = 500,
(d) t = 5000.

3. Dynamics

3.1. Dynamical model and simulation method

In this section, we discuss the dynamics of order–order phase
separation by means of numerical simulations. For the time
evolution of the relative composition φ, which is a conserved
quantity, we consider the following equation:

∂φ

∂ t
= ∇2 δF

δφ

= ∇2
[
4∇4φ + 4∇2φ + τφ + φ3

]
. (10)

For simplicity, the kinetic coefficient is taken to be unity. In the
present dynamical model, we neglect both the hydrodynamic
effect and thermal fluctuations.

In the numerical simulation, we have used the implicit
method with the FFTW algorithm. Compared to the
Euler’s method, this algorithm is useful in solving differential
equations with higher order derivatives such as equation (10).
We have employed the periodic boundary condition and the
simulation starts from a disordered state with a small random
noise around the average composition φ̄. Hereafter we focus
on the coexistence region between the lamellar and hexagonal
phases (see figure 2(b)). We performed numerical simulations
both in two and three dimensions, although the latter result
is still preliminary. In 2D simulations, the mesh number is
256 × 256, the time increment is �t = 0.01, and the space
increment is �x = 0.59. In 3D simulation, on the other
hand, the mesh number is 64 × 64 × 64, the time increment
is �t = 0.01, and the space increment is �x = 0.65.

3.2. 2D simulation

In figures 3 and 4 we show typical time evolutions of the
order parameter φ in two dimensions when (φ̄, τ ) = (0.1, 0.8)

and (0.12, 0.7), respectively. Notice that these points are
located inside the coexistence region between the lamellar and
hexagonal phases in figure 2(b). In the early stage, many
circular spots start to appear simultaneously, as shown in
figure 3(b) at t = 150. Some of the spots are separated
while the others are connected to each other to form stripes.
Then we see in figure 3(c) that the breaking and reconnection
of the stripes take place so that large domains are gradually
formed, although it is still hard to identify clear domains.
Finally, we obtain the coexistence between the lamellar and
hexagonal phases as shown in figure 3(d). Because this pattern
persists until t = 20 000, we believe that the system has
reached almost the equilibrium (or at least metastable) state. A
qualitatively similar time evolution can be observed in figure 4
with a different choice of parameters. Hence we expect
that the kinetics of order–order phase separation between the
lamellar and hexagonal phases is rather universal, at least in
two dimensions.

The above sequence of patterns tells us that the order–
order phase separation initially starts with a microphase
separation, and a macrophase separation follows later through
the rearrangement of microdomains. To see this behavior more
quantitatively, we present in figure 5 the Fourier transformed
patterns of figure 3 in the two-dimensional reciprocal space.
As seen in figure 5(b), a circular ring pattern is seen in
the early stage at t = 150. This means that the structure
is almost isotropic on average and is characterized by the
typical wavelength k∗. Hence the microphase separation
dominates in this time region. Then the six spots (Bragg peaks)
become pronounced in the course of time as in figure 5(c),
indicating that the structure becomes anisotropic with sixfold
symmetry. The Fourier pattern of the final state is given by
figure 5(d), which is very similar to that of the hexagonal
structure. However, it should be noted that the two peaks

4
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Figure 5. Two-dimensional Fourier patterns of figure 3 in the reciprocal space. (a) t = 0, (b) t = 150, (c) t = 500, (d) t = 5000.

Figure 6. (a) Time evolution of the Bragg peak intensities for
φ̄ = 0.1 and τ = 0.8, as shown in figure 5. The vertical axis is the
peak intensity I normalized by its value at t = 20 000, denoted as I0.
The solid line corresponds to the peak of the lamellar pattern while
the dashed line is that of the hexagonal pattern. (b) Time evolution of
the free energy density for the same parameter values.

corresponding to the lamellar pattern (the upper and lower
spots) have stronger intensities than the other four peaks. This
means that there is an epitaxial relation between the lamellar
and hexagonal phases in the macroscopically phase separated
system. A similar epitaxial relation has been identified in
the kinetic pathways of order–order transitions in diblock
copolymer melt [25–27].

In figure 6(a), we plot the time evolution of the Bragg
peak intensities I in figure 5. We follow the peak intensity
of the upper spot corresponding to the lamellar structure (solid
line), and that of the other four peaks reflecting the hexagonal
structure (dashed line). Here the respective peak intensities
are normalized by the lamellar peak value I0 at t = 20 000.
Both intensities increase almost in the same manner up to
t ≈ 100 and then they grow separately. Some cusps in the
curves reflect breaking and reconnection of microdomains as

explained above. In the late stage, the lamellar peak intensity
is twice as large as that of the hexagonal phase. This ratio is
dependent on the average composition φ̄. According to the
lever rule, the lamellar peak intensity will increase as φ̄ is
decreased in the coexistence region. Figure 6(b) is the time
evolution of the free energy density. It decreases monotonically
as a function of time to reach the final structure.

In order to further quantify the evolution of the phase
separated patterns, we calculate the so called Minkowski
functionals. These quantities are used in digital picture
analysis for the characterization of black-and-white discrete
images. For the details of Minkowski functionals, see [28–30].
In the patterns of figure 3, we first reset the gray value of
each lattice to either white or black depending on whether
the original value is larger or lower than the threshold
value φ = 0, respectively. (The result is insensitive to
the choice of the threshold value as long as φ is close to
zero.) Then three quantities are calculated: (i) relative white
area v, (ii) length of the boundary line s between black
and white regions, and (iii) Euler characteristic χ , which
measures the connectivity of the black and white regions [28].
These quantities in the simulation of figure 3 are plotted in
figure 7 as a function of time. The relative white area v
increases rapidly in the early stage and saturates after t ≈
800, as seen in figures 7(a) and (b). The length of the
boundary line s takes a maximum value at around t ≈ 120,
when many circular domains are formed. In figures 7(e)
and (f), the absolute value of the Euler characteristic χ

takes large values in the early stage, since many circular
domains appear. Then it decreases because they connect
to form long stripes. These time evolutions of Minkowski
functionals are consistent with the analysis of the Fourier
patterns.

3.3. 3D simulation

Based on the phase diagram of figure 2(b), we have also
carried out the numerical simulation in three dimensions. In
figure 8, we show the time evolution of the 3D pattern for
(φ̄, τ ) = (0.1, 0.8). Notice that this choice of the parameters
is the same as that in figure 3. As mentioned before, the
coexistence lines between the lamellar and hexagonal phases
in this region are identical between the 2D and 3D cases. The
surfaces in figure 8 represent the iso-planes at φ = −0.2
and we do not see any pattern in figure 8(a). In the early
stage, a random network appears, as seen in figure 8(b).
This may correspond to the phase separated patterns observed

5
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Figure 7. Time evolution of Minkowski functionals for φ̄ = 0.1 and τ = 0.8, as shown in figure 3. (a), (b) The relative black area v, (c), (d)
the length of the boundary line s between black and white regions, (e), (f) the Euler characteristic χ . (b), (d) and (f) are the expansions of the
small-time regions of (a), (c) and (e), respectively.

Figure 8. Time evolution of phase separation pattern for φ̄ = 0.1 and τ = 0.8 in three dimensions. (a) t = 0, (b) t = 150, (c) t = 1000,
(d) t = 5000. The surfaces represent the iso-planes at φ = −0.2.

in the 2D simulations such as in figures 3(b) and 4(b).
Through the breaking and reconnection of the network, we
finally obtain an almost periodic structure as presented in
figure 8(d).

Due to the small system size, we could not observe
any macroscopic phase separation between the lamellar and

hexagonal phases in this simulation. Instead, we obtained the
Bragg peak intensities of figure 8(d), as presented in table 1.
We show here only the peaks whose intensities are larger
than 0.02. It should be noted that this structure was not
taken into account when we calculated the phase diagram in
section 2.

6
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Table 1. The Bragg peak intensities of the structure shown in
figure 8(d). We list only the peaks whose intensities are larger than
0.02.

Reciprocal vectors Intensity

(−2, −1, 4) 0.122 064
(−3, 3, 2) 0.119 915
(−1, 2, 4) 0.071 968
(−4, 0, 2) 0.066 277
(1, −4, 2) 0.062 359
(−4, 2, 1) 0.056 203
(−3,−2, 3) 0.048 956
(2, 4, 1) 0.039 712
(3, 0, 3) 0.032 639
(2, −3, 3) 0.023 958

4. Interface between the lamellar and hexagonal
phases

In this section, we study the mutual orientation between
the lamellar and the hexagonal phases at the interface when
these two phases coexist in equilibrium. We shall determine
analytically the most stable interfacial profile between the
two phases. For simplicity, we compare between the four
different interfaces shown in figure 9, where we choose
the horizontal and vertical axes as the x- and y-directions,
respectively. Here the directions parallel to the stripe and the
interface make angles (a) 0, (b) π/3, (c) π/2, and (d) π/6,
respectively.

In the cases of figures 9(a) and (b), the spatially varying
order parameter φ(r) can be expressed as

φ(r) = φ̄(x)+ 2
3∑

i=1

ci (x) cos(ki · r), (11)

where the three reciprocal vectors are defined by

k1 = k∗(1, 0), k2 = k∗(1/2,
√

3/2),

k3 = k∗(1/2,−√
3/2).

(12)

Notice here that the average composition φ̄(x) and the
amplitudes ci (x) are functions of x . Substitution of
equation (11) into equation (1) yields the equilibrium free
energy in terms of φ̄(x), ci(x), and k∗. In the calculation, we
use an approximation such that all the higher order harmonics
are ignored, which is valid in the weak segregation limit. For
example, the second term of equation (1) becomes
∫

dr(∇φ)2 = L y

∫
dx

(
∂φ̄

∂x

)2

+ 2L y

∫
dx

3∑
i=1

[(
∂ci

∂x

)2

+ k∗2ci
2

]
+ 4L y

∫
dx

[
∂φ̄

∂x

∂c1

∂x
+ ∂c2

∂x

∂c3

∂x
+ k∗2

2
c2c3

]

× cos(k1 · r)+ 4L y

∫
dx

[
−k∗c1

∂φ̄

∂x
− k∗

2
c2
∂c3

∂x

− k∗

2
c3
∂c2

∂x

]
sin(k1 · r), (13)

where we have assumed the periodic boundary condition in
the y-direction, and L y is the system size in the y-direction.

Introducing a phase factor x0 and writing as k1 ·r = k∗(x −x0),
we carry out the integration by parts. The other terms of the
free energy are not presented here because they are lengthy.

In the case of configuration (a), we postulate that the
amplitudes ci(x) and the average composition φ̄(x) are
expressed as

c1(x) = 1

2

[
1 + tanh

(
x

ξ

)]
aH + 1

2

[
1 − tanh

(
x

ξ

)]
aL,

(14)

ci (x) = 1

2

[
1 + tanh

(
x

ξ

)]
aH (i = 2, 3), (15)

φ̄(x) = 1

2

[
1 + tanh

(
x

ξ

)]
φ̄H + 1

2

[
1 − tanh

(
x

ξ

)]
φ̄L,

(16)
where aH and aL represent the equilibrium amplitudes of
the hexagonal and lamellar phases, while φ̄H and φ̄L are
the average compositions in these phases, respectively. The
length ξ determines the interfacial width, which is assumed
to be much smaller than the spatial period of the modulated
structures, i.e. k∗ξ � 1. In the case of (b), on the other hand,
the amplitudes ci (x) can be written as

c2(x) = 1

2

[
1 + tanh

(
x

ξ

)]
aH + 1

2

[
1 − tanh

(
x

ξ

)]
aL,

(17)

ci (x) = 1

2

[
1 + tanh

(
x

ξ

)]
aH (i = 1, 3), (18)

and φ̄(x) is identical to equation (16).
Next we perform the variable transformation x/ξ → x .

From the assumption k∗ξ � 1, we see that the third-order
terms in ξ−1 are dominant in the free energy functional. Hence,
in the cases of figures 9(a) and (b), the free energy can be
approximated as

F
{
φ̄(x), ci(x)

} ≈ 2L yξ
−3

∫
dx

[
∂2φ̄

∂x2
+ 2

3∑
i=1

(
∂2ci

∂x2

)2
]

+ 8L yξ
−3

∫
dx

[
−∂

2φ̄

∂x2

∂2c1

∂x2
− ∂2c2

∂x2

∂2c3

∂x2
− 2

∂c1

∂x

∂3φ̄

∂x3

− ∂c2

∂x

∂3c3

∂x3
− ∂c3

∂x

∂3c2

∂x3

]
cos

(
k∗x0

)
. (19)

Using equations (14)–(16), we obtain for case (a) as

Fa ≈ 2L yξ
−3

∫
dx

(
φ̄2

H − 2φ̄Hφ̄L + φ̄2
L + 6aH

2 − 4aHaL

+ 2aL
2

)
sinh2 x

cosh6 x
+ 8L yξ

−3 cos
(
k∗x0

)

×
∫

dx

[{−4
(
φ̄H − φ̄L

)
(aH − aL)− 4aH

2
} sinh2 x

cosh6 x

+ {(
φ̄H − φ̄L

)
(aH − aL)+ aH

2
} 1

cosh4 x

]

≈ 8

15
L yξ

−3
(
φ̄2

H − 2φ̄Hφ̄L + φ̄2
L + 6aH

2 − 4aHaL + 2aL
2
)

+ 32

15
L yξ

−3 cos
(
k∗x0

) [(
φ̄H − φ̄L

)
(aH − aL)+ aH

2
]
.

(20)
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Figure 9. Four possible interfaces between the coexisting lamellar and hexagonal phases.

Here we considered that the integral ranges from −∞ to ∞,
and used the following integrals:

∫ ∞

−∞
dx

sinh2 x

cosh6 x
= 4

15
, (21)

∫ ∞

−∞
dx

1

cosh4 x
= 4

3
. (22)

Similarly, we obtain the free energy for case (b) as

Fb ≈ 8

15
L yξ

−3
(
φ̄2

H − 2φ̄Hφ̄L + φ̄2
L + 6aH

2 − 4aHaL + 2aL
2
)

+ 32

15
L yξ

−3 cos(k∗x0)
(
φ̄H − φ̄L + aH − aL

)
aH. (23)

In the cases of figures 9(c) and (d), the amplitudes vary
along the y-direction and are given by

c1(y) = 1

2

[
1 + tanh

(
y

ξ

)]
aH + 1

2

[
1 − tanh

(
y

ξ

)]
aL,

(24)

ci (y) = 1

2

[
1 + tanh

(
y

ξ

)]
aH (i = 2, 3), (25)

and

c2(y) = 1

2

[
1 + tanh

(
y

ξ

)]
aH + 1

2

[
1 − tanh

(
y

ξ

)]
aL,

(26)

ci (y) = 1

2

[
1 + tanh

(
y

ξ

)]
aH (i = 1, 3), (27)

respectively. In both cases, the mean composition φ̄(y) is also
a function of y, and is given by

φ̄(y) = 1

2

[
1 + tanh

(
y

ξ

)]
φ̄H + 1

2

[
1 − tanh

(
y

ξ

)]
φ̄L.

(28)
By repeating similar calculations to the cases of (a) and

(b), the free energy of cases (c) and (d) is obtained as

F{φ̄(y), ci(y)} ≈ 2Lxξ
−3

∫
dy

[(
∂2φ̄

∂y2

)2

+ 2
3∑

i=1

(
∂2ci

∂y2

)2]
, (29)

where Lx is the system size in the x-direction. Finally, the free
energies of the interfaces (c) and (d) are given by

Fc ≈ Fd ≈ 8

15
Lxξ

−3
(
φ̄2

H − 2φ̄Hφ̄L + φ̄2
L + 6aH

2

− 4aHaL + 2aL
2
)
. (30)

For the parameter values φ̄ = 0.1 and τ = 0.8, as
we chose in the 2D and 3D simulations, we can numerically
estimate aH ≈ −0.128 86, aL ≈ −0.243 46, φ̄H ≈ 0.113
and φ̄L ≈ 0.086 from the phase diagram in figure 2. With
these values, one can evaluate the minimum of the above free
energies as Fa ≈ 0.0078L yξ

−3 when k∗x0 = π , Fb ≈
0.0109L yξ

−3 when k∗x0 = 0, and Fc ≈ Fd ≈ 0.0498Lxξ
−3.

The difference between cases (c) and (d) appears only in the
order of ξ−1, and it is estimated as Fc−Fd ≈ 0.014Lxξ

−1 > 0.
Summarizing all these results, we find that Fa < Fb < Fd <

Fc holds when Lx = L y . Hence the case of figure 9(a) is
most stable among the other orientations within the present
approximation.

In the 2D simulation results of figures 3(d) and 4(d), we
mostly observe the interfaces corresponding to the case of
figure 9(b) rather than case (a). Hence it is likely that the
system is trapped in a metastable state in the simulation. One
of the possibilities to avoid such a metastable state in the
simulation is to include a thermal noise term in equation (10).
However, we leave this possibility as our future task, because it
is expensive in computer time. It could be also possible that the
condition k∗ξ � 1 which is assumed in the above calculation
may not be satisfied in the simulation. We also note that the
estimated energy difference between cases (a) and (b) is rather
small, at least compared to either case (c) or (d).

The interface between the lamellar and hexagonal phases
was previously studied by Netz et al based on a free energy
similar to equation (1) [17]. They investigated the effect
of temperature on the interfacial energy using a numerical
conjugate-gradient method. In their work, the mutual
orientation between the two phases was assumed to be that of
figure 9(a). This is in agreement with our analytical argument
presented above. We note that the interface of figure 9(a) was
indeed observed in some amphiphilic systems [31, 32].

5. Conclusion

In the present paper, we have investigated both the equilibrium
and dynamical properties of order–order phase separation.
Based on a single order parameter Ginzburg–Landau free
energy, we first obtained the phase diagram in three dimensions
within the two-mode expansion method. Various phase
coexistences between the different ordered phases have been
identified, including the BCC and gyroid phases. Using
computer simulation, we have next focused on the phase
separation kinetics between the lamellar and hexagonal

8
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phases both in two and three dimensions. We find
that the microphase separation takes place in the early
stage and the macrophase separation follows through the
breaking and reconnection of microdomains. This fact
has also been confirmed by analyzing the time evolutions
of the Fourier patterns and various Minkowski functionals.
Finally, we have analytically determined the most stable
orientation at the interface between the lamellar and hexagonal
phases.

Further study of the order–order phase separation is now
in progress. In this paper we have discussed only the dynamics
of the lamellar–hexagonal phase separation. Certainly other
combinations of phase coexistence are possible in 3D systems,
including the BCC and gyroid phases (see figure 2). We are
investigating the kinetics of other types of order–order phase
separation as well as the equilibrium interfacial properties. It
is also interesting to see how one coexistence state between
the ordered phases transforms to the other coexistence state
by, for example, lowering the temperature. In real systems,
critical fluctuations can affect the phase behavior close to the
critical point [22, 23]. Investigation to see how the various
phase coexistences are modified by critical fluctuations is left
for a future problem.
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Appendix. General form of the free energy

Substituting equation (2) into equation (1) and ignoring the
higher order harmonics, we can rewrite the free energy in terms
of a j , bk , Q and P as follows:

F = (
4Q4 − 4Q2 + τ + 3φ̄2

) 12∑
j=1

a j
2

+ (
4P4 − 4P2 + τ + 3φ̄2

) 6∑
k=1

bk
2

+ 3

(
12∑
j=1

a j
2 +

6∑
k=1

bk
2

)2

− 3
2

12∑
j=1

a j
4 − 3

2

6∑
k=1

bk
4

+ 12φ̄
(
a1a3b4 + a1a7a12 + a2a4b3 + a2a6a10 + a3a8a9

+ a4a5a11 + a5a7b6 + a6a8b5 + a9a11b2 + a10a12b1

+ b1b3b6 + b1b4b5 + b2b3b5 + b2b4b6
)

+ 12
(
a1

2b2b5 + a2
2b2b6 + a3

2b1b6 + a4
2b1b5 + a5

2b1b4

+ a6
2b2b4 + a7

2b2b3 + a8
2b1b3 + a9

2b3b6

+ a10
2b4b6 + a11

2b4b5 + a12
2b3b5 + a1a2a3a4

+ a1a2a5a8 + a1a2a6a7 + a1a3b1b2 + a1a3b1b5

+ a1a3b2b6 + a1a3b5b6 + a1a4a9a10 + a1a4a11a12

+ a1a5a10b2 + a1a5a10b5 + a1a5a12b6 + a1a6a9b3

+ a1a6a9b6 + a1a6a11b2 + a1a6a11b4 + a1a6a11b5

+ a1a7a10b1 + a1a8a9b4 + a1a8a11b1 + a1a8a11b3

+ a2a3a9a10 + a2a3a11a12 + a2a4b1b2 + a2a4b1b6

+ a2a4b2b5 + a2a4b5b6 + a2a5a9b1 + a2a5a9b4

+ a2a5a11b3 + a2a6a12b1 + a2a7a9b2 + a2a7a9b3

+ a2a7a9b6 + a2a7a11b4 + a2a7a11b5 + a2a8a10b5

+ a2a8a12b2 + a2a8a12b6 + a3a4a5a8 + a3a4a6a7

+ a3a5a10b1 + a3a5a10b4 + a3a5a10b6 + a3a5a12b3

+ a3a5a12b5 + a3a6a9b5 + a3a6a11b1 + a3a6a11b6

+ a3a7a10b2 + a3a7a10b3 + a3a7a12b4 + a3a8a11b2

+ a4a5a9b2 + a4a6a10b3 + a4a6a12b2 + a4a6a12b4

+ a4a7a9b1 + a4a7a9b5 + a4a7a11b6 + a4a8a10b4

+ a4a8a10b6 + a4a8a12b1 + a4a8a12b3 + a4a8a12b5

+ a5a6a7a8 + a5a6a9a12 + a5a6a10a11 + a5a7b1b2

+ a5a7b1b3 + a5a7b2b4 + a5a7b3b4 + a6a8b1b2

+ a6a8b1b4 + a6a8b2b3 + a6a8b3b4 + a7a8a9a12

+ a7a8a10a11 + a9a10a11a12 + a9a11b3b4 + a9a11b3b5

+ a9a11b4b6 + a9a11b5b6 + a10a12b3b4 + a10a12b3b6

+ a10a12b4b5 + a10a12b5b6 + b1b2b3b4 + b1b2b5b6

+ b3b4b5b6
)
. (31)
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